Neumann Series Analysis of the Wigner Equation Solution

نویسندگان

  • I. Dimov
  • M. Nedjalkov
  • J. M. Sellier
چکیده

The existence and uniqueness of the electron transport Wigner equation solution, determined by boundary conditions, is analyzed in terms of the Neumann series expansion of the integral form of the equation, obtained with the help of Newton’s trajectories. For understanding of the peculiarities of Wigner-quantum electron transport in semiconductor structures such mathematical issues can not be separated from the physical attributes of the solution. In the presented analysis these two sides of the problem mutually interplay. The problem is first formulated from a physical point of view, where the stationary solution is considered as the long time limit of the general evolution problem posed by both initial and boundary conditions. The proof of convergence relies on the assumption for reasonable local conditions which may be specified for the kernel and on the fact that the Neumann series expansion corresponds to an integral equation of Volterra type with respect to the time variable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary conditions and the Wigner equation solution

We consider the existence and uniqueness of the solution of the Wigner equation in the presence of boundary conditions. The equation, describing electron transport in nanostructures, is analyzed in terms of the Neumann series expansion of the corresponding integral form, obtained with the help of classical particle trajectories. It is shown that the mathematical aspects of the solution can not ...

متن کامل

Approximate solution of fourth order differential equation in Neumann problem

Generalized solution on Neumann problem of the fourth order ordinary differential equation in space $W^2_alpha(0,b)$ has been discussed, we obtain the condition on B.V.P when the solution is in classical form. Formulation of Quintic Spline Function has been derived and the consistency relations are given.Numerical method,based on Quintic spline approximation has been developed. Spline solution ...

متن کامل

Stationary Wigner Equation with Inflow Boundary Conditions: Will a Symmetric Potential Yield a Symmetric Solution?

Based on the well-posedness of the stationary Wigner equation with inflow boundary conditions given in [1], we prove without any additional prerequisite conditions that the solution of the Wigner equation with symmetric potential and inflow boundary conditions will be symmetric. This improve the result in [6] which depends on the convergence of solution formulated in the Neumann series. By nume...

متن کامل

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014